USING THE METHOD OF STEGANOGRAPHIC NOISE ANALYSIS TO IDENTIFY SIGNS OF DIGITAL PHOTO EDITING


Keywords: forensic examination of graphic arts, digital images, a method of steganographic noise analysis, entropy, noise.

Abstract

In today’s world, digital technology has almost replaced analog, and in the materials of pre-trial and judicial proceedings used physical evidence in the form of electronic documents or their images, photographs, videos, scanned copies, having a digital nature of education. To date, the question of determining the authenticity and research installation of digital image pressing issues fototechnika examination.

The main purpose of the study using the method of steganographic analysis of image noise is to determine the authenticity of digital photos, identify signs of changes in the «content» of such images.

The possibilities of digital image research methods using the method of steganographic noise analysis to identify signs of editing digital photos (images) to improve the efficiency, quality and evidential significance of photographic examinations are considered. The proposed new methodical approach in solving problems for the study of the installation of digital images, or when establishing their veracity (authenticity).

Developed under the methodology of the study of signs installation of digital images based on the analysis of entropy noise software allows you to conduct research to identify signs of installation on the basis of the analysis of entropy noise digital images by maximization of complex criterion that takes into account the entropy and the variance of the image. It can be used both on local computers, and with use of the powerful server equipment in the mode of remote access through the web interface, including, with use of low-power mobile terminals of the user (smartphones, tablets and so forth) that will considerably facilitate work of experts on research of installation of digital images or at establishment of their reliability (authenticity).

References

Agranovs’kij, A. V., Devyanin, P. N. (2003). Osnovyі komp’yuternoj steganografii. Moskva: Radio i svyaz’. [in Russian].
Shtonda, R. M., Procyuk, Yu. O., Makovec’kij, O. M. Mal’ceva, І. R. (2014). Analіz metodіv cifrovoї steganografії zobrazhen’. Teoretichnі osnovi stvorennya і vikoristannya іnformacіjnih tekhnologіj. № 3(21)/2014 [in Ukrainian].
Babich, І. V., Palamarchuk, N. A. Palamarchuk, V. V. et al. (2012). Oglyad steganografіchnih metodіv peretvorennya іnformacії v zobrazhennyah. NAU, 29-36 [in Ukrainian].
Bobrickij, S. M., Chernyj, S. V. (2010). Metodicheskie aspekty kompleksnogo issledovaniya s cel’yu vyyavleniya priznakov montazha v cifrovoj fotografii. Teorіya ta praktika sudovoї ekspertizi і krimіnalіstiki. Har’kov: Pravo [in Russian].
Brice, C., Fennema, C. (1970). Scene analysis using regions. Computer Methods in Images Analysis. Vol. 1, Issue 3-4, 205-226.
Chornij, S. V. (2017). Rozrobka metodiki doslіdzhennya oznak montazhu cifrovih zobrazhen’ na osnovі analіzu entropії shumіv. HNDІSЕ [in Ukrainian].
Emir, D. A., Memon, N. (2009). Image Tamper Detection Based on Demosaicing Artifacts. Proceedings of the 16th IEEE International Conference on Image Processing (ICIP). 1497-1500.
Fan, J., Cao, H., Kot, A. C. (2013). Estimating EXIF Parameters Based on Noise Features for Image Manipulation Detection. IEEE Transactions on Information Forensics and Security. Vol. 8, Issue 4, 608-618.
Gou, H., Swaminathan, A., Wu, M. (2007). Noise Features for Image Tampering Detection and Steganalysis. Proceedings of the IEEE International Conference on Image Processing. 2893-2896.
Gribunin, V. G. (2019). Teoriya i praktika vejvlet-preobrazovaniya. URL: http://autex. spb. ru/wavelet/books/wtp. htm [in Ukrainian].
Horoshko, V. A., CHekatov, A. A. (2003). Metody i sredstva zashchity informacii. Kiev: Junior [in Ukrainian].
Horoshko, V. O., Azarov, V. O., Shelest, M. E. (2003). Osnovi kompyuternoї steganografії. Vіnnicya: VDTU [in Ukrainian].
Ke1, Y., Zhang, Q., Min, W., Zhang, S. (2014). Detecting Image Forgery Based on Noise Estimation. International Journal of Multimedia and Ubiquitous Engineering. Vol. 9., Issue 1, 325-336.
Konahovich, G. F., Puzyrenko, A. YU. (2006). Komp’yuternaya steganografiya. Teoriya i praktika. Kyiv: MK-Press [in Ukrainian].
Metod steganografіchnogo analіzu, shcho orієntovanij na vidіlennya molodshih bіtіv pіkselіv zobrazhennya. (2019). URL: http://dde. binghamton. edu/download/structural_lsb_detectors/ (дата звернення: 11.04.2019) [in Ukrainian].
Pan, X., Zhang, X., Lyu, S. (2011). Exposing Image Forgery with Blind Noise Estimation. Proceedings of the Thirteenth ACM Multimedia Workshop on Multimedia and Security. 15-20.
Popescu, A. C. (2004). Statistical Tools for Digital Image Forensics. Proceedings of the 6th International Workshop on Infomation Hiding & LNCS. 128-147.
Programnij product. URL: http://5.189.182.106/tec (дата звернення 25.03.2019).
Savita, Walia et al. (2014). International Journal of Computer Science and Information Technologies. IJCSIT. Vol. 5(6), 7618-7622.
Shvidchenko, I. V. (2010). Steganoanalysis Methods for Graphic Files Iskusstvenyj intellekt, № 4 [in Russian].
Timko, E. V. (2013). Rozrobka metodiki doslіdzhen’ cifrovih fotozobrazhen’ ta tekhnіchnih zasobіv їh vigotovlennya. Kyiv: KNDІSЕ [in Ukrainian].
Zadіraka, V. K., Koshkіna, N. V., Oleksyuk, O. S. (2004). Analіz stіjkostі steganografіchnih sistem v modelі pasivnogo protivnika. Iskusstvenyj intellekt, № 3. 801-805 [in Ukrainian].

Abstract views: 26
PDF Downloads: 17
Published
2019-12-04
How to Cite
Chorniy, S., Brendel, O., & Roman, A. (2019). USING THE METHOD OF STEGANOGRAPHIC NOISE ANALYSIS TO IDENTIFY SIGNS OF DIGITAL PHOTO EDITING. Theory and Practice of Forensic Science and Criminalistics, 20(2), 253-263. https://doi.org/10.32353/khrife.2.2019.19
Section
HANDWRITING, LINGUISTIC AND PSYCHOLOGICAL RESEARCHES: METHODICAL APPROACHES